
A Replacement for Voronoi Diagrams of Near Linear
Size∗

Sariel Har-Peled†

June 11, 2001

Abstract

For a set P of n points in Rd, we define a new type of space decomposition. The
new diagram provides an ε-approximation to the distance function associated with the
Voronoi diagram of P , while being of near linear size, for d ≥ 2. This contrasts with
the standard Voronoi diagram that has Ω

(
ndd/2e

)
complexity in the worst case.

1 Introduction

Voronoi diagrams are a fundamental structure in geometric computing. They are being
widely used in clustering, learning, mesh generation, graphics, curve and surface reconstruc-
tion, and other applications. While Voronoi diagrams (and their dual structure Delaunay
triangulations) are simple, elegant and can be constructed by (relatively) simple algorithms,
in the worst case their complexity is Θ(ndd/2e). Even in three dimensions their complexity
can be quadratic and although such behavior is rarely seen in practice (for d = 3) this is
not theoretically satisfying. Despite the vast literature on Voronoi diagrams [Aur91], they
are still not well understood, and several major questions remain open (i.e., the complexity
of the Voronoi diagram of lines in 3D [AS99]). Recently, there was effort to quantifying
situations when the complexity of the Voronoi diagram in 3D has low complexity [AB01],
and when it has high complexity [Eri01].

A Voronoi diagram is induced by the distance function of a point-set P ⊆ Rd. The NN
(nearest neighbor) distance function VP (q) returns the distance between q and its nearest
point in P . The Voronoi diagram is the decomposition of Rd into cells, so that inside each
cell c there is a single point pc ∈ P such that for any point q ∈ c the nearest-neighbor of q
in P is pc.

In this paper, we consider the question of whether one can find an approximate Voronoi
diagram of points in Rd of near linear size. In particular, we are interested in computing
a decomposition of Rd into cells, so that each cell c has an associated point pc ∈ P , such

∗The updated version of this paper is available from the author web-page at [Har01]
†Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave.; Urbana,

IL 61801; USA; http://www.uiuc.edu/~sariel/; sariel@uiuc.edu

1

(a) (b) (c)

Figure 1: (a) The point-set. (b) The generated set of balls, such that answering approximate
NN query is equivalent to performing a point-location query among them. (c) Streaming the
balls to a compressed quadtree results in the required approximate Voronoi diagram.

that for any point in c the point pc is an approximate NN in P . Overall, one would like to
minimize the number of cells and the complexity of each cell in such a decomposition.

If one is interested only in ε-approximating the distance function VP (·) on Rd, then
this can be done in near linear preprocessing time (and space) [Cla94, Cha98, AMN+98],
and the query time is polynomial in log n and 1/ε. However, those data-structures suffer
from exponential dependency on the dimension. Recently Indyk and Motwani [IM98] and
Kushilevitz et al. [KOR98] have presented data-structures of polynomial size and query
time with polynomial dependency on the dimension. However, all those data-structures do
not have a space decomposition associated with them. Clarkson construction [Cla94] can
be interpreted as inducing a covering of space by approximate cells (of the Voronoi cells),
and it answers NN queries by performing a sequence of point-location queries in those cells.
However, those cells are not disjoint in their interior. In fact, if one is willing to compromise
on a space covering instead of space decomposition the problem becomes considerably easier.

In this paper, we present the following results:

• A space decomposition that ε-approximate the Voronoi diagram. It is made out of
O
(
n
εd

(log n) log n
ε

)
cells. Each cell is either a cube or the difference between two cubes.

The cells are the regions arising from an appropriate compressed quadtree.

• Using this compressed quadtree one can answer NN-queries in O(log(n/ε)) time. This
is considerably faster than any previous data-structures, as it is the first one that have
logarithmic dependency in the query time on both n and ε. The previously fastest
query time is achieved by Indyk and Motwani [IM98]. Their construction is inferior
to ours in all relevant parameters (preprocessing time, space, query time) by a factor
polynomial in 1/ε, log n.1

1Unfortunately, Indyk and Motwani do not explicitly state their bounds, and we are unable to provide

2

(a) (b) (c)

Figure 2: (a) The point-set in 3D inducting a Voronoi diagram of quadratic complexity. (b)
Some cells in this Voronoi diagram. Note that the cells are thin and flat, and every cell from
the lower part touches the cells on the upper part. (c) The contact surface between the two
parts of the Voronoi diagram has quadratic complexity, and thus the Voronoi diagram itself
has quadratic complexity.

• In the planar case, one can extract a fat triangulation from the quadtree that ε-

approximates the Voronoi diagram. It is made out of O
(
n
ε2

log ρ(P)
ε

)
triangles, where

ρ(P), the spread of P , is the ratio between the diameter and the distance between
the closest pair. Since the overlay of two fat triangulations has linear complexity,
this is useful for applications requiring the overlay of the Voronoi diagram with other
structures.

Similar bounds hold for decomposition of space into fat simplices.

• To achieve the above results, we describe a relatively simple reduction from NN queries
to point-location in equal balls (PLEB) queries (see details below). We outline the
reduction in Section 2.1. Although such a reduction was previously shown by Indyk and
Motwani [IM98], our reduction is considerably simpler, more intuitive, more efficient
in the number of PLEB queries required to answer NN queries, the overall space used,
and the construction time.

General Idea The idea underlying the construction of the approximate Voronoi diagram
arises from inspecting the standard example of a quadratic complexity Voronoi diagram in
3D depicted in Figure 2 (a). This point-set consists of two collections of points placed along
two segments in 3D. In this construction, there are Ω(n2) pairs of cells that have a common
boundary. However, those cells are very thin slices, and it clear that far enough from their
respective sites, it is possible to shrink portions of one cell, while increasing the size of an
another adjacent cell in order to minimize interaction between cells, while preserving the

direct comparison with their data-structure

3

approximate NN property.
To this end, we consider the construction of the Voronoi diagram to be a tournament

between the sites for regions of influence. Namely, inflate a ball around each point. Those
balls inflate with the same speed around each point, and a point x belongs to site p, if the
ball of p is the first ball to contain x.

Now, consider two sites x and y. Clearly, if the radi of the balls around x and y are large
enough, then we need to grow only one of those balls, as from this distance onward x and
y are almost equivalent. See Figure 3. Assume, that x lost and from this point on the ball
of x does not grow anymore while the ball around y continues to grow. Thus, the cell of x
is now fixed, as x dropped out of the tournament. Namely, the cell of x is now smaller than
its (exact) Voronoi cell, and intuitively, it would not interact with other cells far from it.

We implement this tournament mechanism indirectly, by first constructing a hierarchical
clustering of the sites, and then using this clustering to build a data-structure for answering
NN queries. Finally, we extract from this NN data-structure the relevant set of “critical”
balls needed to perform this tournament. Having this set of (prioritized) balls, it is now
possible to generate the approximate Voronoi diagram.

In Section 2.2 we describe how to hierarchically cluster the input points into a tree (this
is a variant of nearest-neighbor clustering [DHS01]), and give a fast algorithm for computing
this clustering. Next, in Section 2, we use this clustering to reduce the NN search problem
to a sequence of point-location queries among equal balls. In Section 3, we flatten this
construction showing how to answer NN queries by doing point-location among balls. We
present the resulting algorithm and applications in Section 4. Concluding remarks are given
in Section 5.

2 NN Search via PLEB

2.1 Outline

In this section, we outline the reduction from NN search to a sequence of point-location
queries among equal balls (i.e., PLEB queries). The detailed (and somewhat messy) con-
struction is described in Section 2.3.

For a point-set P with n points and a parameter r, let UBP (r) = ∪p∈PB(p, r) denote the
union of equal balls of radius r centered at the points of P .

Definition 2.1 For a point-set P in Rd, and q ∈ Rd, let NN P (q) denote the point of
P which is closest to q, let dP (q) = ‖qNN P (q)‖. For a parameter γ > 0, y ∈ P is an
γ-approximate nearest neighbor of q (i.e., γ-NN) if dP (q) ≤ ‖qy‖ ≤ (1 + γ)dP (q).

Definition 2.2 Given a set of points P in Rd, and a parameter r, a PLEB(P, r) (point-
location in equal balls) is a data-structure so that given a query point q ∈ Rd, it decides
whether q ∈ UBP (r). Furthermore, if q ∈ UBP (r), then it returns a point u of P such that
q ∈ B(u, r).

For a prespecified radius r∗, and a query point q, one can decide whether dP (q) ≤ r∗ by
checking if q ∈ UBP (r∗), where dP (q) is the distance of q to its nearest neighbor in P . This
can be carried out by constructing P = PLEB(P, r∗), and performing a PLEB query in P .

4

Let rmedian be the radius for which UBmed = UBP (rmedian) has exactly n/2 connected
components. By the above discussion, we can construct a PLEB Pmed = PLEB(P, rmedian).
Given a query point q, if q ∈ UBmed (this can be decided by one point-location query in
Pmed), then we continue the search for the NN recursively in the connected component of
UBmed that contains q. Since UBmed have n/2 connected components, it follows, that the
search continues recursively into a subset of P of cardinality at most 1 + n/2.

Alternatively, if dP (q) ≥ rtop = (4nrmedian log n)/ε (this can be decided by a single PLEB
query in PLEB(P, rtop)), then q is “faraway” from the points of P , and we can continue the
search on a decimated subset of P . Namely, from each connected of UBmed, we extract one
point of P that lies inside it. This results in a set P+ ⊂ P that contains n/2 points. We
continue the recursive search into P+. Although continuing the search int P+ introduces
accumulative error into the search results, one can argue that overall the error introduces is
smaller than 1 + ε/3.

The only case that remains unresolved, is when rmedian ≤ dP (q) ≤ rtop. Observe, that
rtop/rmedian = O((n log n)/ε). Namely, we can cover the interval [rmedian, rtop] by M =
log1+ε/3 rtop/rmedian = O((1/ε) log (n/ε)) PLEBs: P1, . . . ,PM , where

Pi = PLEB(P, rmedian(1 + ε/3)i),

for i = 1, . . . ,M .
By performing a binary search on P1, . . . ,PM one can find, using O(logM) PLEB queries,

the index i, such that q /∈ UB(P, rmedian(1 + ε/3)i) and q ∈ UB(P, rmedian(1 + ε/3)i+1).
Namely, we had found an ε-NN to q in P .

Overall, given a query point, either we found its ε-NN using O(logM) = O(log (n/ε))
PLEB queries, or alternatively, we performed two PLEB queries and continued the search
recursively into a set having at most n/2 + 1 points of P . Thus, one can find an ε-NN to a
point by performing O(log (n/ε)) PLEB queries.

2.2 Hierarchical Clustering

In the following, let P be a set of n points in Rd.

Lemma 2.3 Let x, y, q ∈ Rd, and γ ≥ 0 a parameter such that ‖xy‖ ≤ γ ‖qx‖ and ‖xy‖ ≤
γ ‖qy‖. Then ‖qx‖ ≤ (1 + γ) ‖qy‖, and ‖qy‖ ≤ (1 + γ) ‖qx‖.

Proof: ‖qx‖ ≤ ‖qy‖+ ‖yx‖ ≤ ‖qy‖+ γ ‖qy‖ = (1 + γ) ‖qy‖.
The other claim follows by symmetry.
Let q be a query point, and we would like to find a γ-NN to q in P . Lemma 2.3 tell us that

if we have two points that are both “far enough” from q and relatively close together, than
we can consider only one of them. Namely, if one has a lower bound on dP (x), then one can
throw away points from P which are close together (i.e., preserving only one representative
out of such a cluster of points) and consider only the remaining points in the NN query
process.

5

2.2.1 Constructing approximate minimum spanning tree

In the following, we need the MST (minimum spanning tree) to cluster the points hierar-
chically. Unfortunately, for d > 2, no near-linear time algorithm is known for this problem.
Instead, we satisfy ourselves with an approximation to the MST.

Definition 2.4 A tree T having the points of P in its nodes, is an λ-MST of P if it is
a spanning tree of P , having a value len(·) associated with each edge of T , such that for
any edge of e = uv ∈ T , we have that len(e) ≤ d(P1, P2) ≤ λ len(e), where P1, P2 is the
partition of P into two sets as induced by the two connected components of T \ {e}, and
d(P1, P2) = minx∈P1,y∈P2 ‖xy‖ is the distance between P1 and P2.

Remark 2.5 Note, that the above definition of approximate MST diverges from the regular
definition: We do not care about the overall weight, but rather, we insist that the weight of
every edge would be not to far from the true weight in the MST of the point-set.

Lemma 2.6 One can compute a 2-MST Λ of P in Od(n log n) time, where Od(·) hides a
constant that depends exponentially on d.

Proof: We use spanners, as generated by the WSPD (well separated pairs decomposition)
construction of Callahan and Kosaraju [CK95]. Namely, in time Od(n log n + n/εd) we
compute a spanner (i.e., sparse graph) G over the points of P with Od(n/ε

d) edges, so that
the distance between any two points of P in G is a (1 + ε) approximation to their euclidean
distance. Setting ε = 1, results in a running time Od(n log n). The MST Λ of G is the
required spanning tree.

If an edge e ∈ E(G) is assigned weight w, then we set len(e) = w/2. It is easy to verify
that this results in a 2-MST.

If the dimension is not a small constant, then the algorithm Lemma 2.6 is too slow to be
used, as it has an exponential dependency on the dimension.

Lemma 2.7 One can compute a nd-MST of P in O(nd log2 n) time.

Proof: The construction is similar to the construction of the fair-split tree of Callahan and
Kosaraju [CK95] and we only sketch the algorithm. Our construction is based on a recursive
decomposition of the point-set. In each stage, we split the point-set into two subsets. We
recursively compute a nd-MST for each point-set, and we merge the two trees into a single
tree, by adding an edge, and assigning it appropriate weight. To carry this out, we try to
separate the set into two subsets that are furthest away from each other.

Let R = R(P) be the minimum axis parallel box containing P , and let l = l(P) =∑d
i=1 ‖Ii(R)‖, where Ii(R) is the projection of R to the i-th dimension.
Clearly, one can find an axis parallel strip H of width ≥ l/((n−1)d), such that there is at

least one point of P on each of its sides, and there is no points of P inside H. Indeed, to find
this strip, project the point-set into the i-th dimension, and find the longest interval between
two consecutive points. Repeat this process for i = 1, . . . , d, and use the longest interval
encountered. Clearly, the strip H corresponding to this interval is of width ≥ l/((n− 1)d).

Now recursively continue the construction of two trees T+, T−, for P+, P−, respectively,
where P+, P− is the splitting of P into two sets by H. Pick any two points p ∈ P+, q ∈ P−,

6

create the tree T = T+ ∪T− ∪{e}, where e = pq. Finally, set len(e) = l/((n− 1)d). Clearly,
len(e) ≤ d(P+, P−) ≤ l(P) = nd · len(e).

The construction can be performed in O(nd log2 n) time using the techniques of Callahan
and Kosaraju [CK95] and the straightforward details are omitted.

We claim that the resulting tree is a nd-MST. Indeed, if the current set being handled
is Q, then l(Q+), l(Q−) ≤ l(Q), where Q+, Q− are the splitting computed of Q into two
subsets. Let eQ be the edge added to the resulting tree Λ, connecting an arbitrary point of
Q+ to an arbitrary point of Q−.

In this stage, we found a partition of Q into Q+, Q− of distance ≥ l(Q)/(nd) from each
other. Furthermore, we know by induction that d(Q,P \Q) ≤ l(parent(P))/nd ≥ l(Q)/nd.
Thus,

l(Q) ≥ d(Q+, P \Q+) = min(d(Q+, Q−), d(Q+, P \Q))

≥ min

(
l(Q)

nd
, d(Q,P \Q)

)
≥ min

(
l(Q)

nd
,
l(parent(Q))

nd

)
≥ l(Q)

nd
= len(eQ),

as l(parent(Q)) ≥ l(Q). A similar argument holds for Q−. Namely, the edge eQ in the
spanning tree connecting the sets Q+ and Q− is indeed nd-approximation to the distance of
Q+, Q− from the rest of the point-set.

2.2.2 Computing λ-stretch hierarchical clustering

Assume that we are given a λ-MST T , we now use it to cluster the points. For a parameter
r, let UBP (r) = ∪p∈PB(p, r), where B(p, r) is the ball of radius r centered at p. UBP (r) is a
monotone growing set such that UBP (+∞) = Rd. In particular, the distance between x and
the closest point of P , is the value of r for which UBP (r) has x on its boundary. Namely,
we sweep space by the balls centered at the points of P .

Let UP (r) denote the set of connected components of UBP (r), and let CCP (r) ={
P ∩X

∣∣∣X ∈ UP (r)
}

be the partition of P into the connected components of UBP (r).

We would like to trace the history of CCP (r) as r increases from r = 0 to r = +∞. We
define a tree as follows: In the beginning, it is a forest (corresponding to CCP (0)) where
each point of P is a singleton. Every time CCP (r) changes, we have to merge two trees
(i.e., the boundary of two different connected components of UP (P) collided). We hang the
smaller tree on the root of the larger tree (if the two trees are of equal size we resolve this
in an arbitrary fashion). Let G(r) denote this forest at time r. Note, that a tree of G(r)
corresponds to a connected component of UBP (r). Let G = G(∞) denote the resulting tree.

Computing G seems to be expensive, as it is equivalent to computing the minimum
spanning tree of P . We can view G as a hierarchical clustering of P . Instead, we construct
an approximation to the hierarchical clustering of G.

Definition 2.8 Let F be a directed tree storing the points of P in its nodes, so that for any
point p ∈ P there in as an associated value rloss(p). This value is also associated with the
out-edge emanating from p in F .

7

� �

� �
�

�

�
���	�

�

�

�
��� �

 � �

� ����� �����

Figure 3: (a) A point-set and the union of balls as it evolves over time. Note that if a
query point q is far enough from x and y it follows that its distance from x and y is almost
identical. (b) The hierarchical clustering of the points.

Furthermore, let F(r) denote the forest generated from F by removing from it all the
edges e ∈ F such that rloss(e) > r. Let CCP (r) = CCFP (r) be the partition of P into subsets
as induced by the connected components of F(r).
F is a λ-stretch hierarchical clustering of P , if for any r, we have CCP (r) v CCP (r) v

CCP (λr), where A v B if for any X ∈ A, we have Y ∈ B such that X ⊆ Y (i.e., one can
compute B from A by a sequence of merges of sets of A). Intuitively, this means that F is
a λ-approximation to G.

See Figure 3 (b) for an example of such a clustering.

Lemma 2.9 One can compute a nd-stretch hierarchical clustering of P in O(nd log2 n) time.

Proof: We compute a nd-MST Λ of P in O(nd log2 n) time, using the algorithm of
Lemma 2.7. We now sort the edges of T by their len value. Next, we compute F by starting
from a forest that corresponds to all the (singleton) points of P , and performing a sequence
of merges.

In the i-th iteration, we take the i-th edge xiyi and merge the two trees T xi , T
y
i that

contains xi and yi, respectively. To do so, we create a new edge ei connecting the two roots
of T xi and T yi , and orient it an arbitrary fashion (i.e., we “hang” (say) T xi on T yi). Finally,
we set rloss(ei) = len(xiyi)/2, where len(xiyi) is the weight associated with the edge xiyi in
Λ.

It is easy to verify that the resulting tree F is a nd-stretch hierarchical clustering of P .
The tree F encode information about the shape and the NN metric induced by the point-

set P . In the following, we further investigate this connection and show how to answer ε-NN
queries using a structure computed using F .

At any point in time, a point p ∈ P is represented by rep(p, r), which is the root of the
tree of F(r) that contains p.

Lemma 2.10 Let p ∈ P , and q = rep(p, r), then ‖pq‖ ≤ 2nrλ, where rep(·, ·) is defined by
a given λ-stretch hierarchical clustering F of P .

8

Proof: The points p and q belong to the same connected component C of UBP (rλ). The
radius of balls forming UBP (r) is rλ, and the number of balls in C is bounded by n. For a
point p ∈ P , let rloss(p) be the minimum value of r for which p 6= rep(p, r); that is, the time
where the cluster that p represents is being merged (“hanged”) into a large cluster. This is
the rloss value associated with the directed edge emanating from p in F .

The edges of F are directed. For a point p ∈ P , the edge emanating from it upward is
generated at time rloss(p) (here, we view r as the time). This is the moment in time when p
becomes dominated by parent(p).

2.3 Detailed construction

In the following, we assume that we are given F , a λ-stretch clustering of P . This defines
for each point p ∈ P a value rloss(p).

Definition 2.11 For an approximation parameter γ, let rdeath(p) = (6λrloss(p)n log n)/γ.2

For p ∈ P , we define the transition time of p to be the interval I(p) = [rloss(p), rdeath(p)].
Let x be a query point. If dP (x) ≥ L, then one can trim P as follows: We remove from P
all the points that have rdeath(p) ≤ L, let P (L) denote the resulting point-set.

Remark 2.12 The definition of rloss and rdeath, provides us now with the evolving set P (r).
Intuitively, what we got is a multi-resolution representation of the point-set P . This provides
us with a natural way of decimating P when processing a point-location query q, if we ensure
that dP (q) is large enough.

The data-structure we describe for answering approximate NN queries is performing a
binary search for the value of dP (q), while using the accumulated information to decimate
the point-set we search over and restricting the algorithm to the appropriate level of detail
of P provided by P (·).

Lemma 2.13 For a query point q ∈ Rd and a parameter L, let Q be a subset of P , such
that Q induces a connected subtree of F , Q(L) is not empty, and L ≤ dP (q) ≤ dQ(q) ≤
(1 + α)dP (q). Then dP (q) ≤ dQ(L)(q) ≤

(
1 + γ

3 logn

)
(1 + α)dP (q); namely, by restricting the

NN search from Q to Q(L), the quality of the approximation to the NN has deteriorated by
at most a factor of (1 + γ/(3 log n)).

Proof: Let z be the NN of q in Q. If z ∈ Q(L) we are done. Otherwise, let u be lowest
ancestor of z in F which is in Q(L). Let π be the path in F from z to u, and let w be the
child of u in π. Namely, π = z → · · · → w → u.

Clearly, rdeath(w) ≤ L. Arguing as in the proof of Lemma 2.10, we have

‖uz‖ ≤ 2nλrloss(w) ≤ γ

3 log n
rdeath(w) ≤ γ

3 log n
L ≤ γ

3 log n
dP (q)

≤ γ

3 log n
min (‖uq‖ , ‖zq‖) .

2We use the convention that log n = log2 n.

9

By Lemma 2.3, we have

dQ(L)(q) ≤ ‖uq‖ ≤
(

1 +
γ

3 log n

)
‖qz‖ =

(
1 +

γ

3 log n

)
dQ(q)

≤
(

1 +
γ

3 log n

)
(1 + α)dP (q).

One can easily construct an IPLEB (interval PLEB), to answer PLEB queries over a
range of distances.

Lemma 2.14 For 1/2 > γ > 0, given an interval [a, b], and a point-set P , one can construct
O((log b/a)/γ) PLEBs, so that given a query-point q, one can decide if:

(i) dP (q) ≤ a.

(ii) dP (q) ≥ b.

(iii) Find a point y ∈ P , so that ‖qy‖ ≤ (1 + γ/3)dP (q).

If (i) or (ii) happens only two PLEB queries are being carried out, if (iii) happens then
O(log((log(b/a)/γ)) PLEB queries are being performed.

Let I(P, a, b, γ) denote this interval PLEB.
Proof: Let ri = a(1 + γ/3)i−1, for i = 1, . . . ,M − 1, where M =

⌈
log(1+γ/3)(b/a)

⌉
=

O
(

log(b/a)
log(1+γ/3)

)
. Since γ < 1/2, by the Taylor expansion of ln(1+x), we have M = O

(
log(b/a)

γ

)
.

We set rM = b. Let Pi = PLEB(P, ri) for i = 1, . . . ,M .
Clearly, by one query to P1 we can decide if (i) happens (i.e., q /∈ UBP (r1)), and with one

query to PM we can decide if (ii) happens (i.e., q ∈ UBP (rm)). Otherwise, (ii) must happen,
and then q /∈ UBP (r1) and q ∈ UBP (rM). Performing a binary search, on P1, . . . , PM , we
can find the i such that q /∈ UBP (ri) and q ∈ UBP (ri+1).

Let y be the point of P that is returned by Pi+1, because q ∈ B(y, ri+1). Clearly,
ri ≤ dP (q) ≤ ‖qy‖ ≤ ri+1 ≤ (1 + γ/3)ri ≤ (1 + γ/3)dP (q). Thus, y is an γ/3-NN of P , and
we are done.

Definition 2.15 For X ∈ CCP (r), let κ(X) denote the point of X which is the root of the
tree corresponding to X in F(r).

For a point-set X = {x1, . . . , xm} ⊆ P , let rmedian(X) be the median value of rloss(x1)
, . . . , rloss(xm), and let rtop(X) = ((36λ|X| log n)/γ)rmedian(X), where n = |P |.

Lemma 2.16 For X ∈ CCP (rmedian(P)) we have P (rtop(P)) ∩X ⊆ {κ(X)}.

Proof: All the points of X, except maybe κ(X), have rloss ≤ rmedian(P). In particular,
for any x ∈ X, x 6= κ(X), we have rdeath(x) ≤ rtop(P), and thus they are not in P (rtop(P)).

The algorithm for constructing approximate NN search tree using PLEBs, BuildNNTree,
is depicted in Figure 4. Although it stated as an algorithm on the point-set P , it is in fact
a divide and conquer algorithm on the tree F : In each stage, we break F into subtrees, and
continue our search for the NN in the relevant subtree. See Figure 5.

10

Func BuildNNTree(F , M , γ, rmin, rmax)
Input: F - nd-hierarchical clustering

of M
M ⊆ P - set of points
γ - approx. parameter
[rmin, rmax] - range of distances

that should be considered
for NN queries

Output: Tree TM for NN-search on M
begin

Create a node v
Set r−v ← max (rmedian(M), rmin)
Set r+

v ← min (rtop(M), rmax)
Set Pv ←M
if r−v ≥ r+

v then return nil.
Compute Iv ← I(M, r−v , r

+
v , γ/3).

M+ ←M(r+
v).

T ← BuildNNTree(M+, γ, r+
v , rmax)

Set T outer child of v: vouter ← T .
for X ∈ CCM(r−v) do

if |X| > 1 then
vX ← BuildNNTree(X, γ,

rmin, r−v)

return v
end BuildNNTree

Func FindApproxNN(T , q)
Input: T - NN search tree

q - query point
Output: Approx. NN to q in P

begin
v ← Root(T).

Decide whether r−v ≤ dP (q) ≤ r+
v

using Lemma 2.14 on I = Iv.
if dP (q) ≥ r+

v then
return FindApproxNN(vouter, q)

Let u be the point returned by I
if r−v ≤ dP (q) ≤ r+

v then
return u.

(* dP (q) ≤ r−v *)

Let X ∈ CCP (r−v) s.t. u ∈ X
if |X| = 1 then

return u.

return FindApproxNN(vX , q)
end FindApproxNN

Figure 4: Construction of NN search tree. Note, that BuildNNTree uses the λ-stretch
hierarchical clustering F of P in computing the rloss, rdeath values associated with each point
of P . Those values are used in the computation of rmedian(M), rtop(M).

Lemma 2.17 If BuildNNTree is called on a set X ⊆ P , then the induced subgraph of F on
X is connected.

Proof: Note, that the value of rdeath(·) is monotone increasing along a path from any
node of F to the root of F . It follows, that the result always hold for P (r+

v).
As for the other recursive calls. Note that all the other recursive calls are on sets of

CCP (r−v), which are by definition connected subtrees of F .

Lemma 2.18 The depth of the tree constructed by BuildNNTree is at most dlog ne + 1,
where n = |P |.

Proof: Note, that all points of p ∈ P , such that rloss(p) ≤ rmedian(P), have rdeath(p) ≤ rtop(P).
Thus, at least n/2 of the points of P are not present in P (rtop(P)). Namely, |P (rtop(P))| ≤
|P |/2.

11

�

Figure 5: Given a point-set M , and its hierarchical clustering F , the algorithm BuildNNTree

constructs the search structure TM by breaking F into several subtrees. The different subsets
of M being created are depicted. Note that a point of M might participate in at most two
subtrees: the cluster that it represents, and in the top subtree corresponding to the outer
child of v. Note, that p being a subtree of a single point, does not require a recursive call to
construct its own search subtree.

Similarly, since there are n/2 points of P with rloss > rmedian(P), it follows that
UP (rmedian(P)) have at least n/2 connected components. Namely, each X ∈ UBP (rmedian(P))
have cardinality at most ≤ n/2.

Definition 2.19 For a node v ∈ TP , let h(v) denote the height of the subtree of TP stored
at v, and let nv = |Pv|.

Lemma 2.20 The overall number of points stored in each level of TP = BuildNNTree(P, ε)
is 3n.

Proof: An edge −→pq of F , has at most one node in each level of TP that contains both p and
q. Indeed, consider a node v ∈ TP such that p, q ∈ Pv. If rloss(p) > r−v , then p, q belong to
two different sets in CCPv(r−v), and only Pv(r

+
v) might contain both p and q. If rloss(p) < r−v

then p, q belong to the same set in CCPv(r−v), but only q might appear in Pv(r
+
v).

By Lemma 2.17, if a node v was created with a set P (v), such that |Pv| ≥ 2, than P (v)
form a connected induced subtree of F . Namely, we can charge the points to the respective
edges of F , and the overall number of points in each level is bounded by 2(n− 1).

The only type of points not counted above, is when BuildNNTree is called on a set with
a single point (i.e., there is no edge to charge this point to). However, this case happens only
when constructing an outer subtree. We can easily charge this case to the relevant parent,
resulting in the 3n upper bound on the overall number of points stored in each level.

The search for an approximate NN for a query point q is performed by FindApproxNN as
depicted in Figure 4.

Lemma 2.21 The point returned by FindApproxNN(TP , q) is a 2γ-NN to q, for 1/2 ≥ γ ≥ 0,
where TP =BuildNNTree(P, γ).

12

Proof: Every time we descend one level in T through an outer edge, we lose a factor of
(1 + γ/(3 log n)) in the quality of approximation by Lemma 2.13. FindApproxNN stops when
it resolves the NN-query by using Iv, as r−v ≤ dP (q) ≤ r+

v . This introduces an error of at
most a factor of (1 + γ/3).

Thus, the quality of approximation is

(1 + γ/3)

(
1 +

γ

3 log n

)logn+1

≤ (1 + γ/3) exp (γ(log n+ 1)/(3 log n))

≤ (1 + γ/3) exp (γ/2) ≤ 1 + 2γ.

We conclude that the point returned is (1 + 2γ)-approximate NN to q in P .

Lemma 2.22 For 1/2 > ε > 0, let TP = BuildNNTree(F , P, ε/2), where F is a nd-stretch
hierarchical clustering of P . Then TP has the following properties:

(i) Using FindApproxNN on TP answers ε-NN queries using O (log (n/ε)) PLEB queries.

(ii) The overall number of PLEBs used in TP is O
(
n
ε

log (n/ε)
)
.

(iii) The overall number of points stored in the PLEBs of TP is O
(
n logn
ε

log n
ε

)
.

(iv) One can implement BuildNNTree in O
(
n logn
ε

log n
ε

)
time, ignoring the time required

to construct the PLEBs themselves.

Proof: (i) Consider the execution of FindApproxNN on TP , and let I be an interval PLEB

encountered during the search. It has K = O
((

log b
a

)
/ε
)

PLEBs, where b
a
≤ rtop(P)

rmedian(P)
=

((36λ|P | logn)/ε)rmedian(P)
rmedian(P)

= O
(
n logn
ε

)
, as λ = nd = O(n). Thus, K = O

(
1
ε

log n logn
ε

)
=

O
(

log (n/ε)
ε

)
. If r−v ≤ dP (q) ≤ r+

v then FindApproxNN performs a binary search on the internal

PLEBs of I. This requires O(logK) PLEB queries, but once this is done, the algorithm
returns the approximate NN, and terminates the search. Otherwise, either dP (q) ≤ r−v or
dP (q) ≥ r+

v . In both cases only two PLEB queries are being performed. Since the depth
of the tree is O(log n), we conclude that the overall number of PLEB queries performed by

the algorithm is O (logK + log n) = O
(

log log (n/ε)
ε

+ log n
)

= O
(
log n

ε

)
, as can be easily

verified.
(ii) Arguing as in the proof of Lemma 2.20, we can interpret the construction of TP as a
recursive splitting of the edges of F . It follows that the overall number of nodes of TP is
O(n). Since each node of TP have at most K PLEBs, it follows, that the overall number of

PLEBs in TP is O
(
n log (n/ε)

ε

)
.

(iii) By Lemma 2.20, each level of TP stored ≤ 3n points. Each such point might participate
in K PLEBs, and the depth of TP is O(log n).
(iv) We construct a nd-stretch clustering F of P in O(n log2 n) time, using the algorithm
of Lemma 2.9. This provides us with the rloss value for each of the points of P . Next,
implementing BuildNNTree in the time stated is straightforward, using the bound of (iii).
Overall, the running time is O

((
1
ε

log n
ε

+ log n
)
n log n

)
= O

(
n logn
ε

log n
ε

)
.

We can now strengthen our data-structure, by allowing approximate PLEB.

13

Definition 2.23 Let P be a set of points in Rd, and r > 0, and γ > 0 parameters. An
γ-approximate point-location in equal ball data-structure, denoted by γ − PLEB(P, r), is a
data-structure built on the points of P , so that given a query point q ∈ Rd, it decides whether
q ∈ UBP (r). However, it is allowed to return a positive answer if q ∈ UBP ((1 +γ)r). It must
return a negative answer only if q /∈ UBP ((1 + γ)r). Furthermore, if it returns a positive
answer, then it returns a point u of P such that q ∈ B(u, (1 + γ)r).

Theorem 2.24 One can modify BuildNNTree, so that T = BuildNNTree(P, ε/18) answers
ε-NN queries using O (log(n/ε)) PLEB queries. Furthermore, this holds when BuildNNTree

uses (ε/9)-PLEBs instead of exact PLEBs.

Proof: The proof is similar to the proof of Lemma 3.6 below, and is thus omitted.

Remark 2.25 An equivalent result to Theorem 2.24 was previously proved by Indyk and
Motwani [IM98]. However, our reduction is considerably simpler, more efficient, and has
other applications as demonstrated below.

3 NN Search via Point-location among Balls and Cubes

3.1 Point-Location among Balls

In this section, we consider the following problem: Given a set of points P , generate a small
set B of balls so that for any query point q, an approximate NN to q can be computed by
finding the ball in B that contains q.

Definition 3.1 For a set of balls B such that
⋃
b∈B

b = Rd (i.e., one ball is infinite and covers

the whole space), and a query point q ∈ Rd, the canonical ball of q in B is the smallest ball
of B that contains q (if several equal radius balls contain q we resolve this in an arbitrary
fashion).

Lemma 3.2 For an interval PLEB I = I(P, a, b, γ), one can compute a set B of
O ((|P |/γ) log(b/a)) balls, so that for a query point q, if a ≤ dP (q) ≤ b, then the canon-
ical ball containing q in B corresponds to a point which is γ-NN to q in P .

Proof: Observe, that each PLEB(P, r) can be realized by a set of |P | balls of radius r
centered at the points of P . Let B be the set of balls which is the union of the set of balls
generated from each PLEB of I.

Since the canonical point-location gives preference to smaller balls, it follows that per-
forming a point-location in B is equivalent to performing a binary search among the PLEBs
of I and the lemma follows.

At this stage, a natural solution to the problem mentioned above would be to take the
tree generated by BuildNNTree, and transform all the IPLEBs stored in it into a set of
balls, as described in Lemma 3.2. For a node v ∈ TP , let Balls(v) denote the set of balls
resulting for applying this process to the subtree of v. Namely, let Balls(v) = B(Pv, r

max
v) ∪

14

Balls(Iv) ∪
⋃
u child of v Balls(u), where B(Pv, r

max
v) =

{
b(p, rmaxv)

∣∣∣ p ∈ Pv}. The following

lemma is straightforward.

Lemma 3.3 For a node v ∈ TP , and any two (inner) children vX , vY , the sets of balls
Balls(vX) and Balls(vY) are disjoint. Furthermore, for any bX ∈ Balls(vX), b ∈ Balls(vI),
and bouter ∈ Balls(vouter), we have r(bX) ≤ r(b) ≤ r(bouter).

Theorem 3.4 Let P be a set of n points in Rd. Given a parameter ε > 0, one can compute
a set B(P) of O ((n/ε)(log n) log(n/ε)) balls, so that given any query point q, the center of
the canonical ball b ∈ B that contains P , is an ε-NN to q in P .

Proof: Let TP be the NN-tree computed by BuildNNTree, so that TP answer ε/3-NN queries.
Let B(P) = Balls(TP). The bound on the size of B(P) follows from Lemma 2.22 (iii).

We claim that for a node v of height i a point-location query in Balls(v) returns an
(1 + γ)i(1 + ε/3) approximate NN to the query point q among the points of Pv, where
γ = ε/(3 log n).

If the height of v is 1 then claim trivially holds. Otherwise, consider the interval PLEB
Iv of v. If dPv(q) ≥ r+

v , then all the balls in Balls(v) \ Balls(vouter) do not contain q,
and the search continues recursively into vouter. Clearly, the quality of approximation is
(1 + γ)h(v)(1 + ε/3) by induction.

If dPv(q) ≤ r−v , then let X ∈ CC(Pv, r−v) be the set of CCPv(r−v) that contains q. By
induction, when we perform a point-location query in Balls(vX), we find a ball b ∈ Balls(vX)
which contains q, and its center is an (1 + γ)h(vX)(1 + ε/3) approximation to the NN to q
in X. We observe that all the balls in Balls(v) \ Balls(v) are either have radius larger than
r−v , or alternative, are induced by points belonging to other sets of CCPv(r−v). In later case,
those balls can not contain q. Thus, performing a point-location query in Balls(vX) with q,
is equivalent to performing the query in Balls(v) with q.

If r−v < dPv(q) ≤ r+
v then the only set of balls of Balls(v) which are relevant are Balls(Iv).

Clearly, by the definition of the interval PLEB Iv, the canonical ball of q in Balls(Iv) is
defined by an ε/3-NN point to q among the points of Pv.

Definition 3.5 For a ball b = b(p, r) centered at p of radius r, a set C is an ε-approximation
to b, if b ⊆ C ⊆ b(p, (1 + ε)r). For a set of balls B, the set C is an ε-approximation to B if
for any ball b ∈ B there is a corresponding ε-approximation Cb ∈ C. For a set C ∈ C, let
b(C) ∈ B denote the ball corresponding to C, and let p(C) denote the center of b(C).

Given a point q, the canonical set of C that contains q is the set of C that contains q and
is associated with the smallest radius ball of B.

Lemma 3.6 Let TP be the tree returned by BuildNNTree(P, ε/6), B = Balls(TP), and C an
ε/9 approximation to B. Let q be an arbitrary query point in Rd, and C be the canonical set
of C containing q. Then p(C) ∈ P is an ε-NN to q in P .

Proof: We claim that if a node v has height i, Pv contains a (1 +α)-NN to q, and rminv ≤
dP (q) ≤ rmaxv , then a point-location query in C(Balls(v)) returns an (1 + ε/3)(1 + γ)i(1 + α)
approximate NN to the query point q among the points of Pv, where γ = ε/(3 log n).

If the height of v is 1 then claim trivially holds, and we omit the easy proof. Otherwise,
one of the following holds:

15

• dPv(q) ≤ r−v (1 − ε/9): Let X ∈ CC(Pv, r−v) be the set of CCPv(r−v) that contains q.
We observe that all the sets in C(v) \ C(vX), either have radius larger than r−v , or
alternatively, are induced by points belonging to other sets of CCPv(r−v). In the later
case, those sets can not contain q, as their distance from q is at least (1 + ε/9)r−v ,
and the radius of the balls used to define them is ≤ r−v . Thus, performing a point-
location query in C(vX) with q, results in the same set as performing the query in
C(v) with q. By induction, when we perform a point-location query in C(vX), we find
a set C ∈ C(vX) which contains q, and its center is an (1 + ε/3)(1 + γ)i−1(1 + α)
approximation to the NN to q in X.

• (1 − ε/9)r−v ≤ dPv(q) ≤ r−v (1 + ε/9): If C ∈ C(v) \ (C(Iv) ∪ C(vouter)), then this
set corresponds to a point p = p(C) of distance ≤ (1 + ε/9)r−v from q. Namely,

‖pq‖ ≤ (1 + ε/9)r−v ≤ (1 + ε/9)
dPv (q)

1−ε/9 ≤ (1 + ε/3)dPv(q).

Otherwise, it must be that r−v ≤ dPv(q) ≤ r−v (1 + ε/9), and q is contained inside a set
C ∈ C(Iv). The distance of q to p(C) is at most (1 + ε/9)(1 + ε/(3 · 6))dPv(q), and the
claim holds.

• r−v (1 + ε/9) ≤ dPv(q) ≤ r+
v : Only the sets in C(Iv) are relevant, and the point-location

resolve the query correctly, with error at most (1 + ε/9)(1 + ε/18)dPv(q).

• r+
v ≤ dP (q) ≤ (1+ε/9)dP (q): If q is contained inside a set C of C(v)\C(vouter), then we

are done, as p(C) is an ε/3-NN to q as can be easily verified. Otherwise, performing
a point-location query in C(v) is equivalent to performing a point-location query in
C(vouter), which implies the correctness of the result by induction, as vouter contains an
(1 + γ)(1 + α)-NN to q, by Lemma 2.13, and its height is ≤ i− 1.

• (1+ε/9)r+
v ≤ dPv(q): All the sets in C(v)\C(vouter) do not contain q, and the search con-

tinues recursively into vouter. The claim now follows by induction and by Lemma 2.13.

Applying the claim to the root of TP with α = 0, it follows that the quality of NN found
is (1 + ε/3)(1 + γ)dlogn+1e(1 + 0) ≤ 1 + ε, as required.

3.2 Point-location among cubes

For a real number u, let G(u) be the partition of Rd into a uniform axis-parallel grid centered
at the origin, where the side-length of the grid is 2blog uc (we define buc to be the largest integer
number smaller than u). Note, that by varying the value of u, we get a multi-resolution grid
that covers space.

For a ball b = b(p, r), let GC(b, ε) be the set of cubes of the grid G(rε/(3d)) that intersects
b. Let bε = ∪c∈GC(b,ε)c. Clearly, bε is an ε-approximation to b. Note that |GC(b, ε)| =
O(1/εd). For a set of balls B, let GC(B, ε) = ∪b∈BGC(b, ε). For c ∈ GC(B, ε), let r(c) be
the radius of the smallest ball b ∈ B, such that c ∈ GC(b, ε). Similarly, let p(c) be the center
of the ball that realizes r(c).

Theorem 3.7 Let P be a set of n points in Rd. Given a parameter ε > 0, one can compute
a set C(P) of O

(
n logn

εd
log n

ε

)
cubes, all of them taken from the hierarchical grid G(·). For

16

any query point q, let c(q) be the cube of C that contains it and has the smallest value of r(c)
associated with it. Then, p(c) is an ε-NN to q in P . The running time needed to compute
this set of cubes is O

(
n logn

εd
log n

ε

)
.

Proof: Let TP be the tree returned by BuildNNTree for ε/3, and let B = Balls(TP) be
the associated set of balls. Let C = ∪b∈BGC(b, ε/9). Clearly, C is the required set of cubes.
The correctness of the result follows from the observations that bε is an ε-approximation to
b, for any b ∈ B, and as such the result is correct by Lemma 3.6.

A naive bound on the size of C is O
(
n logn
εd+1 log n

ε

)
. However, one can do better, as follows:

For a point p ∈ P , and an interval PLEB I ∈ TP , such that p ∈ I, let Bp,I be the set
of balls in B centered at p that were created during the realization of I by balls. Clearly
|Bp,I | = O((log n/ε)/ log(1 + ε)) = O(log (n/ε)/ε). However, those balls have a common
center, and the smaller balls have higher priority in the point-location. Thus, we can throw
out the cubes having low-priority covered by higher priority cubes. It follows, using a
standard exponential grid argument, that the number of cubes in Cp,I = ∪b∈Bp,IGC(b, ε/9)
is only O((log n/ε)/(εd log(2))) = O((log n/ε)/εd). Since there are O(n log n) pairs (p, I) of
point/IPLEB in TP , It follows that the overall number of cubes in C is O

(
n logn

εd
log n

ε

)
.

Remark 3.8 In the set of cubes generated by Theorem 3.7 there is one infinite cube, that
covers the whole space. This is a “background” cube, that serves for answering ε-NN queries
when the query point is so far from P that any point of x ∈ P is an ε-NN to the query point.

4 Algorithm and Applications

Consider the set of cubes computed by the algorithm of Theorem 3.7. Since all those cubes
are taken from a hierarchical grid representation of Rd, we can store all those cubes in a
quadtree, and use the quadtree to answer point-location queries among those prioritized
cubes (note that larger cubes, stored in higher levels of the quadtree have lower priority, as
the radius of the ball that created them is larger), and thus approximate nearest-neighbor
queries. By using compressed quadtrees, we have our main result:

Theorem 4.1 Let P be a set of n points in Rd, and a parameter ε > 0, then one can
compute a set C(P) of O

(
n logn

εd
log n

ε

)
regions. Each region is either a cube or an annulus

(i.e., the difference between two cubes, one contained inside the other). The regions of C(P)
are disjoint and provide a covering of space.

Furthermore, each such region c ∈ C has an associated point p ∈ P , so that for any point
q ∈ c, the point p is a ε-NN of q in P . Thus, given a query point q ∈ Rd, one can compute
in O(log (n/ε)) time a ε-NN to q in P .

The overall time to perform this construction is O
(
n logn

εd
log2 n

ε

)
.

Proof: We use Theorem 3.7 to compute the required set C of cubes. Next, we store this set
of cubes in a compressed quadtree. Using standard techniques [AMN+98], this compressed
quadtree Q can be computed in O(|C| log |C|) = O

(
n logn

εd
log2 n

ε

)
time. Finally, we need to

dump all the leafs of Q (they provide the required covering of space). Note that since this
is a compressed quadtree, a leaf either corresponds to a cube, or to the region between two
cubes.

17

Finally, we note that we can preprocess the leafs of Q for point-location using the data-
structure of [Fre85]. A point-location query, for a point q, can be answered in O(log |Q|) =
O(log(n/ε)) time. Since the point pc associated with the cell found contains q is an ε-NN
for all the points of c, it follows that we can answer ε-NN queries in O(log (n/ε)) time.

Remark 4.2 Theorem 4.1 provides an ε-approximation to a Voronoi diagram. The standard
Voronoi diagram has complexity O(ndd/2e) in the worst case in d-dimensions. The dissection
of space provided above is only approximate but has considerably smaller complexity. In
particular, our solution has near-linear dependency on n.

Remark 4.3 The result of Theorem 4.1 provides the fastest currently known algorithm for
answering approximate NN queries, with near-linear space. To our knowledge, all other
approximate NN data-structures have query time with polynomial dependency on 1/ε.

4.1 A point-set with bounded spread

The spread ρ(P) of a point-set P is the ratio ∆(P)/δ(P), where ∆(P) is the length of the
diameter of P , and δ(P) is the distance between the closest pair of points of P . If one
allows the algorithms to depend on ρ(P), then one can generate considerably simpler data-
structures with (potentially) better performance. The results above are interesting in the
cases where ρ(P) is very large (i.e., exponential in n); namely, the input is highly clustered.

Lemma 4.4 Given a set P of n points in Rd and a bounding cube U that contains it, one
can compute a set C of O((n/εd) log(ρ(P)/ε)) disjoint cubes that covers U , such that for each
cube c ∈ C there is a point pc ∈ P associated with it, so that pc is a ε-NN for all points inside
c. Furthermore, one can answer approximate NN queries inside U by finding the cube of C
that contains the query point.

Proof: We observe, that to resolve an approximate NN query in such setting, it is enough
to construct a single interval PLEB I = I(P, δ(P)/2, 3∆(P)/ε, γ). Arguing as in the proof
of Theorem 3.7, we generate the corresponding set of cubes and the result follows.

Remark 4.5 The approximate NN problem is easy when ρ(P) is small. For relevant results
see [AEIS99, Car01] on fast data-structures for answering approximate NN queries. Similar
results to [AEIS99] follows by using stratified trees [vE77] with Lemma 4.4.

A α-fat decomposition D of a cube U , is a disjoint covering of C by simplices, so that
if two simples are adjacent, than their diameters are the same up to a factor of α, and
furthermore, for any σ ∈ D the ratio between the smallest ball containing σ, and the largest
ball contained in σ is bounded by α.

It is well known, that given a quadtree Q of depth L with n-nodes then one can compute
a set of O(nL) cubes that cover space, which provides a refinement to the decomposition
of space provided by Q and has a constant ratio between the sizes of two cubes that share
a common facet [BEG94]. Clearly, by triangulating any of those cubes, the resulting de-
composition is going to be α-fat, for an appropriate constant α that depends only on the
dimension. Note, that the smallest ball generated by the algorithm constructing the set of
balls Balls(P, ε) is of radius O(εδ(P)/ log n). Putting everything together, we conclude:

18

Theorem 4.6 Let P be a set of n points in Rd, and let U be a cube that contains P such that
diam(U) ≤ (diam(P))2/ε. Given a parameter ε > 0, one can compute a α-fat decomposition

of U into O
(
n
εd

log ρ(P)
ε

)
simplices, where α is an appropriate constant independent of ε.

Furthermore, each simplex c ∈ C has an associated point p ∈ P , so that for any c point
q ∈ c, the point p is a ε-NN of q in P .

In the plane, this result can be turned into fat triangulation (i.e., the above decomposition
is not a valid simplicial complex) by using the techniques of Bern et al. [BEG94].

Theorem 4.7 Let P be a set of n points in the plane, ε a parameter larger than zero, and
U a square that contains P such that diam(U) ≤ (diam(P))2/ε. Then, one can compute a

α-fat triangulation T of U made out of O
(
n
ε2

log ρ(P)
ε

)
triangles, where α is an appropriate

constant independent of ε. Furthermore, each triangle c ∈ T has an associated point p ∈ P ,
so that for any c point q ∈ c, the point p is a ε-NN of q in P . This triangulation can be

computed in O
(
n
ε2

log2 ρ(P)
ε

)
time.

5 Conclusions

In this paper, we presented (to our knowledge) the first decomposition of space that approx-
imates a Voronoi diagram and has near linear size. The updated version of this paper is
available online [Har01].

There are numerous open questions for further research:

• Can the construction be improved and yield a smaller decomposition?

• The construction is currently indirect, going through the usage of PLEBs. It would be
nice to avoid this and come up with a direct and simpler construction.

• Can one maintain such a decomposition of space efficiently for moving points?

• Can one come up with a better construction of Interval PLEB for constant dimension?

• Can one define a similar notion of approximate Voronoi diagram for a set of lines in
3D. It is clear that quadratic complexity is a lower bound, by the ruled surface con-
struction of Chazelle [Cha84]. However, even a quadratic bound would be interesting
in this case, as the bound for the exact Voronoi diagram is still open. The question is
especially interesting for the case of Voronoi diagram defined by a surface in 3D. Such
a construction would be useful for algorithms doing shape simplification.

Acknowledgments

The author wishes to thank Pankaj K. Agarwal, Alon Efrat, Jeff Erickson, Piotr Indyk and
Edgar Ramos for helpful discussions concerning the problems studied in this paper. The
author also wishes to thank David Bunde for his comments on the write-up.

19

References

[AB01] D. Attali and J.D. Boissonnat. Complexity of the delau-
nay triangulation of points on a smooth surface. http://www-
sop.inria.fr/prisme/personnel/boissonnat/papers.html, 2001.

[AEIS99] A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient algorithms and regular data
structures for dilation, location and proximity problems. In Proc. 40th Annu.
IEEE Sympos. Found. Comput. Sci., pages 160–170, 1999.

[AMN+98] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. Assoc.
Comput. Mach., 45(6), 1998.

[AS99] P.K. Agarwal and M. Sharir. Pipes, cigars, and kreplach: The union of Minkowski
sums in three dimensions. In Proc. 15th Annu. ACM Sympos. Comput. Geom.,
pages 143–153, 1999.

[Aur91] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data
structure. ACM Comput. Surv., 23:345–405, 1991.

[BEG94] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J.
Comput. Syst. Sci., 48:384–409, 1994.

[Car01] M. Cary. Towards optimal ε-approximate nearest neighbor algorithms in constant
dimnesions. from web page, 2001.

[Cha84] B. Chazelle. Convex partitions of polyhedra: a lower bound and worst-case
optimal algorithm. SIAM J. Comput., 13:488–507, 1984.

[Cha98] T.M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput.
Geom., 20:359–373, 1998.

[CK95] P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J.
ACM, 42:67–90, 1995.

[Cla94] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc.
10th Annu. ACM Sympos. Comput. Geom., pages 160–164, 1994.

[DHS01] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley-
Interscience, New York, 2nd edition, 2001.

[Eri01] J. Erickson. Nice points sets can have nasty delaunay triangulations. In Proc.
17th Annu. ACM Sympos. Comput. Geom., 2001. To appear. Available from
http://compgeom.cs.uiuc.edu/˜jeffe/pubs/spread.html.

[Fre85] G. N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM J. Comput., 14(4):781–798, 1985.

20

http://www-sop.inria.fr/prisme/personnel/boissonnat/papers.html
http://www-sop.inria.fr/prisme/personnel/boissonnat/papers.html
http://compgeom.cs.uiuc.edu/~jeffe/pubs/spread.html

[Har01] S. Har-Peled. A replacement for voronoi diagrams of near linear size. manuscript.
Available from http://www.uiuc.edu/~sariel/papers, 2001.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput.,
pages 604–613, 1998.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proc. 30th Annu. ACM Sympos.
Theory Comput., pages 614–623, 1998.

[vE77] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Inform. Process. Lett., 6:80–82, 1977.

21

http://www.uiuc.edu/~sariel/papers/

	Introduction
	NN Search via PLEB
	Outline
	Hierarchical Clustering
	Constructing approximate minimum spanning tree
	Computing -stretch hierarchical clustering

	Detailed construction

	NN Search via Point-location among Balls and Cubes
	Point-Location among Balls
	Point-location among cubes

	Algorithm and Applications
	A point-set with bounded spread

	Conclusions

